Penerapan elips dalam kehidupan sehari-hari dapat dijumpai di berbagai macam sektor. Pada banyak kasus, hanya beberapa informasi dalam elips yang diketahui sehingga kita harus menentukan informasi-informasi yang hilang untuk dapat menyelesaikan permasalahan elips yang diberikan. Pada kasus lainnya, kita harus menulis kembali persamaan elips yang diberikan untuk menentukan informasi yang berhubungan dengan p,q, dan f.
Contoh 1: Permasalahan Karakteristik Elips
Di Washington D.C., terdapat taman Ellipse yang terletak di antara Gedung Putih dan Monumen Washington. Taman tersebut dikelilingi oleh suatu jalan yang berbentuk elips dengan panjang sumbu mayor dan minornya secara berturut-turut adalah 458 meter dan 390 meter. Apabila pengelola taman tersebut ingin membangun air mancur pada masing-masing fokus taman tersebut, tentukan jarak antara air mancur tersebut.
Pembahasan Karena panjang dari sumbu mayornya 2p = 458 maka kita peroleh p = 458/2 = 229 dan p2 = 2292 = 52.441. Sedangkan panjang sumbu minornya 2q = 390, sehingga q = 390/2 = 195 dan q2 = 1952 = 38.025. Untuk menentukan f, kita dapat menggunakan persamaan fokus.
Jadi, jarak antara kedua air mancur tersebut adalah 2(120) = 240 meter.
Contoh 2: Prosedur Medis
Litotripsi merupakan suatu prosedur medis yang dilakukan untuk menghancurkan batu di saluran kemih dengan menggunakan gelombang kejut ultrasonik sehingga pecahannya dapat dengan mudah lolos dari tubuh. Suatu alat yang disebut lithotripter, berbentuk setengah elips 3 dimensi mengaplikasikan sifat-sifat dari titik fokus elips, digunakan untuk mengumpulkan gelombang ultrasonik pada satu titik fokus untuk dikirimkan ke batu ginjal yang terletak di titik fokus lainnya. Perhatikan gambar berikut.
Jika lithotripter tersebut memiliki panjang (sumbu semi mayor) 16 cm dan berjari-jari (sumbu semi minor) 10 cm, seberapa jauh dari titik puncak seharusnya batu ginjal tersebut diposisikan agar diperoleh hasil yang maksimal?
Pembahasan Dari soal, kita dapatkan panjang sumbu semi mayornya adalah q = 16, sehingga q2 = 162 = 256 dan panjang sumbu semi minornya adalah p = 10, sehingga p2 = 102 = 100. Dengan menggunakan persamaan fokus,
Sehingga, jarak titik puncak dengan titik fokus di mana batu ginjal diposisikan dapat ditentukan sebagai berikut.
Jadi, agar diperoleh hasil yang maksimal, batu ginjal tersebut seharusnya terletak pada jarak 28,49 dari titik puncak lithotripter.
Soal dan Pembahasan Penerapan Elips
4/
5
Oleh
Wahyu Eko Nugroho